Accelerometer lab series

"Inclined Planes using the TiltTray and smartphone accelerometers"

- teacher notes

Skills and concepts covered in this lab

- understanding accelerometers
 - o contact (normal) forces
 - contact forces causing accelerations
 - contact forces on motionless objects (balancing gravitational forces)
 - Simple application of F = ma
 - o gravity, "weightlessness", "g-force" concepts
 - optional: Einstein's equivalence principle
- understanding geometry
 - exposure to inclined-plane coordinate systems
 - o local vs. global coordinate systems
 - smartphone coordinate systems
 - deducing its structure through real-time display of data
 - choices of positive directions
 - exposure to 3D geometry, "in-out of page" directions
- vector skills
 - breaking vectors into components
 - o polar and component form

Sequencing and Time

- We have suggested the theory "understanding accelerometers" be given to students before the lab, but it can also be read and discussed for the first time during the lab period itself.
- Fits very comfortably in a typical 2-hour lab period.

Notes

Teacher notes: doing all questions during lab time may be hard. Consider doing only the first two diagrams of question 2 and only 2 or 3 rows of question 3, for example.

Sequence/lecture suggestion

- Opening lecture:
 - \circ $\;$ Smartphone axes nomenclature ; constant even when orientation changes $\;$
 - But phone uses just "x y z" nomenclature
 - Try via linear acceleration tests
 - Gravity trick: easier than linear acceleration tests
 - Part 1 of "understanding accelerometers"
 - Accelerometer display: note 3 colored lines, two near zero, one near +-1.
- Lab work (using app, but not TiltTray)
 - "coordinate systems" activity
 - \circ $\;$ Verify that student can explain reasoning for a given axis
 - Now give access to TiltTray apparatus for next activity
- Lab activity 2 (using TiltTray, but not the app)
 - Examine apparatus with 3 angles
 - Components of g theory exercise (plumb line is gravity direction)
 - Measure critical angle
- Second lecture:
 - g_vec = a_vec "correct interpretation" horizontal and inclined scenarios
 - i.e. parts 3 and 4 of "understanding accelerometers"
- Lab activity 3 (using TiltTray AND the app together)
 - Work through instructions for Table 2

<u>Materials</u>

• the TiltTray apparatus

- Designed specifically for this lab.
- We have a set of 10 TiltTrays ready to bring to your college!

• Demo material

• Ongoing; so far, we have a ball in a box and lots of hand waving.

• Smartphones

• Set up your own! We are getting a few just for use of the accelerometer app in class.