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The reconstruction of motion from accelerometer data is, in the general case, difficult. One 

problem is the noise-amplification drift inherent to double-integration techniques. Another 

fundamental problem is the seperation of the proper acceleration into gravitational and 

coordinate-acceleration components. Einstein’s equivalence principle precludes any hardware-

level solutions to this latter problem, recently-announced atom interferometry technologies 

notwithstanding.  

For motions subject to mechanical constraints, however, appropriate exploitation of the 

reduction in the degrees of freedom could lead to significant improvements in or complete 

elimination of these problems. In such an approach, a set of differential equations provides a 

parametrised characterisation of both the constraints imposed on the physical object and the 

geometrical relationship between the object and the sensor. By evaluating the convergence of 

multi-dimensional minimization algorithms, we expect to automatically infer the type of 

constraint at play. A corollary of the successful detection of such “constraint signatures” in the 

accelerometer data is the recovery of reliable estimates for all parameters in the model, 

including, for a broad class of constraints, state variables for the reduced-coordinate degrees of 

freedom. 

A methodical exploration of some of these opportunities is the subject of a recently-awarded 3-

year FRQNT grant whose scope and goals will be outlined in this presentation. Although our 

study begins with models having a small number of parameters, the development of such 

techniques promises broad applicability as a low-level classification layer in machine-learning 

architectures involving more complex physical systems. Recognizing that traditional ML systems 

suffer from inflexibility and poor transfer to related domains, there is increasing interest in 

hybrid systems that incorporate domain-specific knowledge. Different deep networks 

specialized for distinct application domains could eventually re-use the same “physics layer” 

whose output is also human-interpretable, leading to improved system comprehensibility and 

reduced development costs. 

 

 

 

 

 

 


