
Summary
Reconstruction of motion from accelerometer data is, in the general case, difficult:

o Einsteinian proper acceleration : separate into gravitational and coordinate-
acceleration components

o double-integration techniques: noise-amplification “drift”
o signal conditioning

Motions subject to mechanical constraints are more docile. Exploit:
o reductions in the degrees of freedom
o coupling of 2nd-order kinematics with lower-orders. Eg:

• radial acceleration --> angular velocity
• gravitational orientation --> angular position

o redundancy opportunities for Bayesian filtering

Anticipated low-level feature-extraction capabilities:
o constrained DOF’s:

• tracking of the invariant or slowly-varying properties of the system
o unconstrainted DOF’s:

• robust estimates of the ( higher-variability ) state variables
o sensor signal:

• positioning, alignment; calibration, linearity; smoothing, channel “cross-talk”

Constraints: 
o detection of elemental low-DOF “constraint signatures”:

• rotating, rolling and sliding contact scenarios
• mechanical and biomechanical joints

o all “in situ”, under realistic load and motion conditions
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Target Properties
o small: 

• size, power requirements
• weight, memory footprint
• gyro-free

o fast: 
• performance, latency

o human-interpretable
• retargetable component

o “smart” devices: 
• mobile, iOT, wearable, health/fitness
• “edge computing” 

o biomedical: 
• biomechanical and motor-control 

impairments, rehabilitation, monitoring
o “industry 4.0” : 

• online monitoring, fault detection, 
robotic control

Applications
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